Energia Éolica

Content on this page requires a newer version of Adobe Flash Player.

Get Adobe Flash player

Energia Éolica

O vento resulta do deslocamento de massas de ar, derivado dos efeitos das diferenças de pressão atmosférica entre duas regiões distintas e é influenciado por efeitos locais como a orografia e a rugosidade do solo.
Essas diferenças de pressão têm uma origem térmica estando directamente relacionadas com a radiação solar e os processos de aquecimento das massas de ar.

O aerogerador obtém energia convertendo a energia do vento num binário actuando sobre as pás do rotor. A quantidade de energia transferida ao rotor pelo vento depende da densidade do ar, da área de varrimento do rotor e da velocidade do vento.

Densidade do ar: A energia cinética de um corpo em movimento é proporcional a sua massa, assim a energia cinética do vento depende da densidade do ar, i.e., da sua massa por unidade de volume. Quanto “mais pesado ou denso” seja o ar, maior quantidade de energia receberá a turbina. A pressão atmosférica normal a densidade do ar é de 1,225 Kg/m3. A grandes altitudes a pressão do ar diminui e o ar é menos denso.

Área de varrimento do rotor: A área de varrimento (área de uma circunferência pxr2) determina quanta energia do vento a turbina eólica é capaz de captar. Dado que a área do rotor aumenta com o quadrado do raio, uma turbina duas vezes maior recebe 4 vezes mais energia.

Desvio do Vento: A imagem anterior esta simplificada, na realidade o aerogerador desvia o vento antes deste chegar ao plano do rotor, pelo que nunca será possível capturar toda a energia do vento. (ver Lei de Beltz). Na imagem acima temos o vento que vem da direita e um aerogerador. O rotor da turbina eólica trava o vento quando captura a sua energia cinética e a converte em energia rotacional. Isto implica que o vento se mexe mais devagar na parte esquerda do rotor que na parte direita.Uma vez que a quantidade de ar (por segundo) que passa através da área de varrimento do rotor desde a direita deve ser igual a que abandona a área do rotor pela esquerda, o ar ocupará uma maior secção transversal (diâmetro), por trás do plano do rotor. Este efeito pode apreciar-se na imagem acima, onde se mostra um tubo imaginário, o chamado tubo de corrente, ao redor do rotor. O tubo de corrente mostra como o vento em movimento lento para a esquerda ocupara um grande volume na parte posterior do rotor.

Distribuição da pressão no rotor: este gráfico mostra a pressão do ar no eixo vertical, e no eixo horizontal a distância ao plano do rotor. A pressão do ar aumenta gradualmente à medida que o vento se aproxima do rotor, uma vez que o rotor actua como barreira ao vento, detrás do rotor a pressão cai imediatamente, estabilizando gradualmente a medida que se afasta. A medida que o vento se afasta do rotor a turbulência do vento provoca que o vento mais lento se misture com o vento mais rápido da área circundante, reduzindo o efeito de “abrigo ao vento”.

A energia cinética, resultante das deslocações de massas de ar, pode ser transformada em:

  • energia mecânica através de aeromotores;
  • energia eléctrica através de turbinas eólicas ou aerogeradores.

 

A potência mecânica disponível (P) numa turbina depende grandemente (factor cúbico) da velocidade do caudal de ar que passa através dela, o que faz com que o interesse e o aproveitamento deste recurso varie muito com a intensidade e a direcção do vento.

FONTE: portal das energias renováveis.


Certificado On-line


Teclado